Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.05.20054338

ABSTRACT

Using a Bayesian approach to epidemiological compartmental modeling, we demonstrate the bomb-like behavior of exponential growth in COVID-19 cases can be explained by transmission of asymptomatic and mild cases that are typically unreported at the beginning of pandemic events due to lower prevalence of testing. We studied the exponential phase of the pandemic in Italy, Spain, and South Korea, and found the R0 to be 2.56 (95% CrI, 2.41-2.71), 3.23 (95% CrI, 3.06-3.4), and 2.36 (95% CrI, 2.22-2.5) if we use Bayesian priors that assume a large portion of cases are not detected. Weaker priors regarding the detection rate resulted in R0 values of 9.22 (95% CrI, 9.01-9.43), 9.14 (95% CrI, 8.99-9.29), and 8.06 (95% CrI, 7.82-8.3) and assumes nearly 90% of infected patients are identified. Given the mounting evidence that potentially large fractions of the population are asymptomatic, the weaker priors that generate the high R0 values to fit the data required assumptions about the epidemiology of COVID-19 that do not fit with the biology, particularly regarding the timeframe that people remain infectious. Our results suggest that models of transmission assuming a relatively lower R0 value that do not consider a large number of asymptomatic cases can result in misunderstanding of the underlying dynamics, leading to poor policy decisions and outcomes.


Subject(s)
COVID-19 , Infections
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.03.20051995

ABSTRACT

Background: COVID-19 originated in China and has quickly spread worldwide causing a pandemic. Countries need rapid data on the prevalence of the virus in communities to enable rapid containment. However, the equipment, human and laboratory resources required for conducting individual RT-PCR is prohibitive. One technique to reduce the number of tests required is the pooling of samples for analysis by RT-PCR prior to testing. Methods: We conducted a mathematical analysis of pooling strategies for infection rate classification using group testing and for the identification of individuals by testing pooled clusters of samples. Findings: On the basis of the proposed pooled testing strategy we calculate the probability of false alarm, the probability of detection, and the average number of tests required as a function of the pool size. We find that when the sample size is 256, with a maximum pool size of 64, with only 7.3 tests on the average, we can distinguish between prevalences of 1% and 5% with a probability of detection of 95% and probability of false alarm of 4%. Interpretation: The pooling of RT-PCR samples is a cost-effective technique for providing much-needed course-grained data on the prevalence of COVID-19. This is a powerful tool in providing countries with information that can facilitate a response to the pandemic that is evidence-based and saves the most lives possible with the resources available.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL